Section 5.1

Definition of the Natural Logarithmic Function: The natural logarithmic function is defined by

$$
\ln x=\int_{1}^{x} \frac{1}{t} d t, \quad x>0
$$

The domain of the natural logarithmic function is the set of all positive real numbers.
Properties of the Natural Logarithmic Function: The natural logarithmic function has the following properties:

1. The domain is $(0, \infty)$ and the range is $(-\infty, \infty)$.
2. The function is continuous, increasing, and one-to-one.
3. The function is concave downward.

Logarithmic Properties: If a and b are positive numbers and n is rational, then the following properties are true:

1. $\ln (1)=0$
2. $\ln (a b)=\ln a+\ln b$
3. $\ln \left(a^{n}\right)=n \ln a$
4. $\ln \left(\frac{a}{b}\right)=\ln a-\ln b$

Definition of \boldsymbol{e} : The letter e denotes the positive real number such that

$$
\ln e=\int_{1}^{e} \frac{1}{t} d t=1
$$

Derivative of the Natural Logarithmic Function: Let u be a differentiable function of x.

1. $\frac{d}{d x}[\ln x]=\frac{1}{x}, \quad x>0$
2. $\frac{d}{d x}[\ln u]=\frac{1}{u} \frac{d u}{d x}=\frac{u^{\prime}}{u}, \quad u>0$
1) Expand the following logarithmic expressions.
a) $\ln \sqrt[3]{2 x-1}$
b) $\ln \left(\frac{17 x}{x-2}\right)$
c) $\ln \frac{\sqrt{x^{2}+3}}{2(x-2)^{3}}$
2) Find the following:
a) $\frac{d}{d x}\left[\ln \left(3 x^{2}\right)\right]$
b) $\frac{d}{d x}[\ln (\sin x)]$
c) $\frac{d}{d x}\left[(\ln (2 x-1))^{2}\right]$
d) $\frac{d}{d x}[\ln \sqrt[3]{3 x+4}]$
3) Differentiate $f(x)=\ln \left[\frac{2 \sqrt{3 x^{2}+1}}{x^{2}(x+1)^{3}}\right]$.
4) Use logarithmic differentiation to find the derivative of $g(x)=\frac{\left(x^{2}-4\right)^{3}}{\sqrt[3]{x^{4}-2}}$
5) Find the derivative of $f(x)=\ln |\tan x|$. Simplify the derivative using trigonometric identities.
